Bayesian linear regression with Student-t assumptions
نویسندگان
چکیده
As an automatic method of determining model complexity using the training data alone, Bayesian linear regression provides us a principled way to select hyperparameters. But one often needs approximation inference if distribution assumption is beyond Gaussian distribution. In this paper, we propose a Bayesian linear regression model with Student-t assumptions (BLRS), which can be inferred exactly. In this framework, both conjugate prior and expectation maximization (EM) algorithm are generalized. Meanwhile, we prove that the maximum likelihood solution is equivalent to the standard Bayesian linear regression with Gaussian assumptions (BLRG). The q-EM algorithm for BLRS is nearly identical to the EM algorithm for BLRG. It is showed that q-EM for BLRS can converge faster than EM for BLRG for the task of predicting online news popularity.
منابع مشابه
Bayesian Treatment of the Independent Student-t Linear Model
This article takes up methods for Bayesian inference in a linear model in which the disturbances are independent and have identical Student-t distributions. It exploits the equivalence of the Student-t distribution and an appropriate scale mixture of normals, and uses a Gibbs sampler to perform the computations. The new method is applied to some well-known macroeconomic time series. It is found...
متن کاملThe Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data
The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...
متن کاملThe Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models
In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...
متن کاملLinear models of student skills for static data
Current student skills models rely on non linear models such as Bayesian Networks and Bayesian Knowledge Tracing, and on general linear models, such as IRT which can be considered a logistic regression. Only a handful of recent studies have looked at linear models based on matrix factorization techniques. These studies obtained good success over data from dynamic student knowledge states when c...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1604.04434 شماره
صفحات -
تاریخ انتشار 2016